“机率?’戴明博士大吼:“我们不谈机率。至于中央极限理论,我倒希望你告诉我那是什么玩意儿,我已经有55年没用过它了。我不想知道这些东西,但请你告诉我,你到底是什么意思?(台下大笑)‘中央极限理论?’把它丢掉一边去吧!那是我们教授统计时所遇到的问题之一。我们教学生错误的东西,还教得非常好。”
另一位大胆的学员提供了一个答案:“人口数必须平均掉。”
“什么叫做‘平均掉’?戴明回问:“什么是‘人口数’?我一辈子都没看过。” 传过来的回答是:“就是宇宙万物、全人类。”
“全人类?”戴明博士提醒他:"告诉我这是什么意思。我认为我们有必要好好想想,不要强不知以为知。现在大家继续告诉我,你们根据什么基础预测 xˉ会落在什某处?为什么?在我们今天早上进行实验之前,你们会预测 xˉ会落在某处吗?不会吧!我不是要大家发表意见。我不是提出某个东西请大家来检验。不是这样。你们不可以、也不应该做出类似的预测。 “现在我们既然具备统计控制的观念,所以我们可以说, xˉ会落在某个数字。我们不知道它会是哪个数字。而我们只有‘4天’,4天看起来似乎也可以找到落点——某处,某个数字。我们再看看资料。11.8;8.5;8.3;8.0……它们似乎有下滑的趋势,也许会朝某个数字靠近吧?我不知道。如果再实验4天,也许可以了解得更多。你们说 xˉ会落在哪个特定数字呢?刚刚听到有人小声说:‘对呀!对呀!’。你说对了。我认为会。现在告诉我,究竟会落在哪里?” “10。”同样的答案再度出现了。
戴明博士继续说:“你们现在说它会落在10这个数字,你们又错了。注意,这正是你们需要学习的地方。当然,我们每个人都在学习。但为什么你们说它会落在10呢?凭什么?你们毫无根据。我们目前为所拥有的证据显示,它不会落在10。数据呈现的是11.8;8.5;8.3;8.0的下滑趋势。你们为什么说是10呢?这是一厢情愿的想法。因为你们学习统计理论时,没有学到它的精髓,不知如何利用。告诉我,为什么会是10?”
一名听众坚称:“盒中有20%是红珠,所以应该是10。” 戴明博士答道:“应该是,实际却不是!你可以很清楚看出它不是。为什么你说是10。因为50的20%是10,而盒中20%的珠子是红的。假如你用这种态度经营事业,你就有麻烦了。” 讲到这晨,重点开始渐渐澄清。因为我们看到的平均数不是10,而是似乎还要低些。既然如此,必定有某些变数影响整个过程。 有位男士问:“变数是否不只一个呢?你只告诉我们珠子的颜色有红,有白。它们大小相同吗?”
戴明博士认真考虑了一下说:“大小不同?它们当然大小不同了。它们个个不同。你知道嘛。这又如何?这是否表示你已得到10以外的解答了呢?” “这么想是没用的!假如珠子与洞口不吻合,它们便无法计入样本中了。” “你说对了”他客气的告诉这位男士,然后转头笑问听众:“我为什么要绕一大圈呢?”